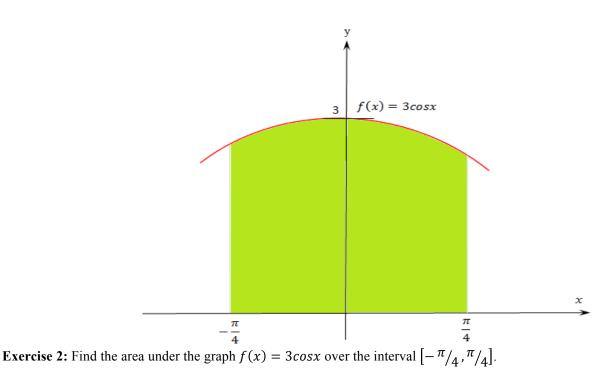
EG02021 Mathematics Class 7: Integration

5.3 The Fundamental Theorem of Calculus


Geta Second Form of the Fundamental Theorem of Calculus

Exercise 1: Compute the definite integrals-

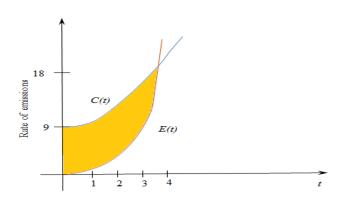
a)
$$\int_0^2 (x+x^2) dx$$

b)
$$\int_0^1 a^x dx$$

$$\int_0^\pi e^{i\alpha x} dx$$

c)
$$\int_{\pi/2} \sin x \, dx$$

□ The Average Value of a Function


Exercise 1: Engine Emissions. The emissions of an engine are given by $E(t) = 2t^2$, where E(t) is the engine's rate of emission, in billions of pollution particulates per year, at time *t*, in years. Find the average emissions from t=1 to t=5.

5.4 Properties of Definite Integrals

D The Area of a Region Bounded by Two Graphs

Exercise: Emission Control. A clever college student develops an engine that is believed to meet federal standards for emission control. The engine's rate of emission is given by $E(t) = 2t^2$, where E(t) is the emissions, in billions of population particulates per year, at time t, in years. The emission rate of a conventional engine is given by $C(t) = 9 + t^2$.

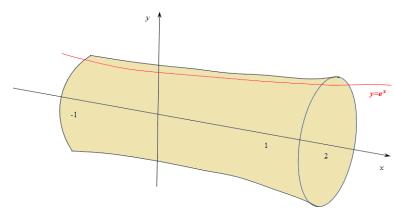
The graphs of both curves are shown below.

- At what point in time will the emission rates be the same? a)
- b) What is the reduction in emissions resulting from using the student's engine between time 0 and when the emission rates are the same?

5.5 Integration Techniques: Substitution

Exercise

- Compute $\int 2xe^{x^2} dx$. 1.
- Use substitution and the dx notation to integrate $\int 2xe^{x^2} dx$. 2.
- 3.
- Evaluate $\int \frac{2x \, dx}{1+x^2}$ Evaluate $\int \frac{2x \, dx}{(1+x^2)^2}$ 4.
- Evaluate $\int \frac{\ln 3x}{x} dx$ 5.
- 6. Evaluate $\int x \sqrt{x^2 + 1} dx$ 7. Evaluate $\int \frac{1}{\sqrt{x}} \sin \sqrt{x} dx$


5.6 Integration Techniques: Integration by Parts

Exercise: Evaluate $\int x lnx dx$

5.7 Volume

Exercise: Find the volume of the solid of revolution generated by rotating the region under the graph of

 $y = e^x$ from x = -1 to x = 2 about the x-axis.

5.8 Improper Integrals

Exercise: Determine whether the following integral is convergent or divergent, and calculate its value if it is convergent: $\int_0^\infty 2e^{-2x} dx$.

5.9 Trapezoid Rule

The Trapezoid rule approximation for $\int_a^b f(x) dx$ using n trapezoids is

$$Tn = \frac{\Delta x}{2} [y_0 + 2y_1 + 2y_2 + \dots + 2y_{n-1} + y_n],$$

Where

$$\Delta \mathbf{x} = \frac{b-a}{n}$$
, $\mathbf{X}_{\mathbf{k}} = \mathbf{a} + \mathbf{k}\Delta \mathbf{x}$ and $\mathbf{y}\mathbf{k} = \mathbf{f}(\mathbf{X}_{\mathbf{k}})$

The weights are the coefficient 1, 2, 2, 2, ..., 2, 1 and the *terms* are the weights multiplied by yk. For example, the weight of y_0 is 1 and the first term is 1. $y_0=y_0$

Exercise:

Estimate the integral $\int_{-1}^{1} \sqrt{1-x^2} dx$ using

- a) The Trapezoid rule with n = 4
- b) The Trapezoid rule with n = 8

6.0 Simpson's Rule

Simpson's approximation for $\int_a^b f(x) dx$ using n subintervals is

$$\operatorname{Sn} = \frac{\Delta x}{3} [y_0 + 4y_1 + 2y_2 + 4y_3 + 2y_4 \dots + 2y_{n-2} + 4y_{n-1} + y_n],$$

Where n is even,

 $\Delta x = \frac{b-a}{n}$, $X_k = a + k\Delta x$ and $yk = f(X_k)$. To use Simpson's rule, n must be even

Exercise:

Estimate the integral $\int_{-1}^{1} \sqrt{1 - x^2} dx$ using Simpson's Rule for n = 8